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Abstract

Goldreich and Oren (JoC’94) show that only trivial languages have 2-message zero-knowledge
arguments. In this note we consider weaker, super-polynomial-time simulation (SPS), notions of
zero-knowledge. We present barriers to using black-box reductions for demonstrating soundness
of 2-message protocols with efficient prover strategies satisfying SPS zero-knowledge. More pre-
cisely, we show that assuming the existence of poly(T (n))-hard one-way functions, the following
holds:

• For sub-exponential (or smaller) T (·), polynomial-time black-box reductions cannot be used
to prove soundness of 2-message T (·)-simulatable arguments based on any polynomial-
time intractability assumption. This matches known 2-message quasi-polynomial-time
simulatable arguments using a quasi-polynomial-time reduction (Pass’03), and 2-message
exponential-time simulatable proofs using a polynomial-time reduction (Dwork-Naor’00,
Pass’03).

• poly(T (·))-time black-box reductions cannot be used to prove soundness of 2-message
strong T (·)-simulatable (efficient prover) arguments based on any poly(T (·))-time in-
tractability assumption; strong T (·)-simulatability means that the output of the simulator
is indistinguishable also for poly(T (·))-size circuits. This matches known 3-message strong
quasi-polynomial-time simulatable proofs (Blum’86, Canetti et al’ 00).
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1 Introduction

The notion of zero-knowledge, and the simulation-paradigm used to define it, is of fundamental
importance in modern cryptography—most definitions of protocol security rely on it. In a zero-
knowledge protocol, a prover P can convince a verifier V of the validity of some mathematical
statement x ∈ L, while revealing “zero (additional) knowledge” to V . This zero-knowledge property
is formalized by requiring that for every potentially malicious efficient verifier V ∗, there exists an
efficient simulator S that, without talking to P , is able to “indistinguishably reconstruct” the view
of V ∗ in a true interaction with P . Namely, the output of S cannot be distinguished (with more
than negligible probability) from the true view of V ∗ by any efficient distinguisher D.

Assuming standard cryptographic hardness assumptions, 3-message zero-knowledge proofs with
constant soundness [Blu86], 4-message zero-knowledge arguments (where the soundness is guaran-
teed to hold only against efficient provers) with negligible soundness [FS90], and 5-message zero-
knowledge proofs with negligible soundness [GK96] are known for all languages in NP; additionally
these interactive proofs/arguments have efficient prover strategies. On the other hand, by the re-
sults of Goldreich and Oren [GO94], 2-message zero-knowledge arguments only exist for languages
in BPP. In the rest of this note, we focus on interactive proofs/arguments with negligible soundness
error and efficient prover strategies

Super-Polynomial-Simulation (SPS) Zero-Knowledge. The usual notion of zero-knowledge
requires the simulator to be efficient (i.e., it runs in polynomial time). However, the notion of
super-polynomial-simulation (SPS) zero-knowledge [Pas03] allows the simulator to run in super-
polynomial time. More specifically, the notion of SPS zero-knowledge is defined similarly to zero-
knowledge except that the simulator is allowed to run in super-polynomial time T (·); such protocols
are referred to as T (·)-simulatable. [Pas03] also defined the (stronger) notion of strong SPS zero-
knowledge with the additional requirement that any poly(T (·))-time distinguisher cannot distin-
guish the simulated transcript from a true transcript with better than negl(T (·)) advantage; such
protocols are referred to as strong T (·)-simulatable.

It is known that under sub-exponential hardness assumptions 2-message quasi-polynomial-time
(i.e., T (n) = npoly logn) simulatable arguments for NP exist, but 2-message T (·)-simulatable proofs
only exist for languages in BPT IME(poly(T (·))) [Pas03]. On the other hand, for 3-message
protocols, strong quasi-polynomial-time simulatable proofs for NP exist [Blu86, CGGM00] (based
on sub-exponential hardness assumptions).

This leaves open the following questions regarding 2-message SPS zero-knowledge:

1. Do 2-message SPS zero-knowledge arguments for NP exist based on standard
polynomial-time hardness assumptions?

2. Do 2-message strong SPS zero-knowledge arguments for NP exist (even under
sub-exponential hardness assumptions)?

In this note, we present barriers to using black-box reductions for providing affirmative answers to
the above two questions. In particular, we show the following:

Theorem 1 (Informally Stated). Assuming the existence of poly(T (n))-hard one-way functions,
the following holds:
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1. For sub-exponential (or smaller) T (·), polynomial-time black-box reductions cannot be used
to prove soundness of 2-message T (·)-simulatable (efficient prover) arguments based on any
intractability assumption that can be modeled as a security game with a polynomial-time chal-
lenger.

2. poly(T (·))-time black-box reductions cannot be used to prove soundness of 2-message strong
T (·)-simulatable (efficient prover) arguments based on any intractability assumption that can
be modeled as a security game with a poly(T (·))-time challenger.

The first part of our theorem matches known 2-message quasi-polynomial-time simulatable argu-
ments using a quasi-polynomial-time reduction [Pas03], and 2-message exponential-time simulatable
proofs using a polynomial-time reduction [DN00, Pas03]. The second part of our theorem matches
(in terms of the round-complexity) the 3-message strong quasi-polynomial-time simulatable proofs
of [Blu86, CGGM00].

On the Fiat-Shamir Heuristic (added on December 19th, 2012). We were recently made
aware of two e-print reports [DSJKLA12, BGW12] (independent of our work) demonstrating barri-
ers to provable security of the Fiat-Shamir heuristic when applied to proof systems. Let us briefly
point out that a direct corollary of our Theorem 1 yields an even stronger provability barrier.1

As we mentioned above, [CGGM00] shows (assuming one-way permutations with subexponential
hardness), the existence of a 3-message strong quasi-polynomial-time simulatable proof (with neg-
ligible soundness error); additionally, this protocol is public coin. Assuming the soundness of the
Fiat-Shamir heuristic (when applied only to proof systems), this 3-message proof system can be
collapsed to a 2-message strong quasi-polynomial-time simulatable proof system (the “collapsed”
protocol is still strongly quasi-polynomial-time simulatable since the hash-function used in the
Fiat-Shamir heuristic can just be viewed as a particular malicious verifier. Our Theorem 1 shows
that this 2-message proof system can not be proven sound through a black-box reduction to any
“standard” assumption.

2 Intractability Assumptions and Black-Box Reductions

Our definition of an intractability assumption closely follows [Pas11]. Following Naor [Nao03] (see
also [DOP05, HH09, RV10, GW11]), we model an intractability assumption as an interactive game
between a probabilistic machine C—called the challenger—and an attacker A. Both parties get
as input 1n where n is the security parameter. For any t(n) ∈ [0, 1] and any “adversary” A,
if Pr [〈A,C〉(1n) = 1] ≥ t(n) + p(n), then we say that A breaks C with advantage p(n) over the
“threshold” t(n). When this happens, we might also say that A breaks (C, t(·)) with advantage
p(n). Any pair (C, t(·)) intuitively corresponds to the following assumption:

Assumption (C, t(·)): For every polynomial-time adversary A, there exists a negligible
function ν(·) such that for every n ∈ N, A breaks C with advantage at most ν(n) over
the threshold t(n).

1Our result rules out also nonuniform security reductions, as well as reductions that only need to work for deter-
ministic attackers, two techniques that are commonly used in cryptographic proofs. In constrast, as far as we can tell,
the results of [DSJKLA12, BGW12] only rule out uniform reductions that need to work for randomized attackers.
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If the challenger C of the assumption (C, t(·)) is polynomial-time in the security parameter
n and the total length of the messages it receives, then we say that the assumption is efficient
challenger ; such assumptions are referred to as falsifiable assumptions by Naor [Nao03] and Gentry
and Wichs [GW11]. More generally, we refer to an assumption (C, t(·)) as having a T (·, ·)-time
(resp. size) challenger if C can be implemented in time (resp. size) T (n, `) on input the security
parameter 1n, and when receiving messages of total length `. (C, t(·)) is an efficient challenger
assumption if and only if (C, t(·)) has a T (·, ·)-time (or size) challenger where T (n, `) is polynomial
in both n and `. For simplicity, we here consider either poly(n, `)-time (or size) challengers, or
T (n, `) = T (n)-time (or size) challengers, where the running-time of the challenger is bounded only
as a function of the security parameter.

Note that we can capture super-polynomial hardness of an assumption by allowing for super-
polynomial-time reductions to the assumption.

Black-Box Reductions. We consider probabilistic polynomial-time Turing reductions—i.e., black-
box reductions. A black-box reduction refers to a probabilistic polynomial-time oracle algorithm.
Roughly speaking, a black-box reduction for basing the security of a primitive P on the hardness
of an assumption (C, t(·)), is a probabilistic polynomial-time oracle machine R such that whenever
the oracle O “breaks” P with respect to the security parameter n, then RO “breaks” (C, t(·)) with
respect to a polynomially related security parameter n′ such that n′ can be efficiently computed
given n. We restrict ourselves to the case where n′ = n, since without loss of generality we can
always redefine the challenger C so that it acts as if its input was actually n′ (since n′ can be effi-
ciently computed given n). To formalize this notion, we thus restrict ourselves to oracle machines
R that on input 1n always query the oracle on inputs of the form (1n, ·).

Definition 1. We say that R is a valid black-box reduction if R is an oracle machine such that
R(1n) only queries its oracle with inputs of the form (1n, y), where y ∈ {0, 1}∗.

The reason to restrict R to only query its oracle on a single “input length” n (which is the case
also in all known security reductions in the literature), is that standard cryptographic definitions
require ruling out the existence of attackers that break some primitive even for any infinite sequence
of input lengths; as these input lengths can be very sparse, a black-box reduction might only get
to access the adversary over a single “good” input length (and that input length could as well be
equal to the length n′ over which they win the challenge). Therefore, it must successfully use the
adversary even if it has access to an attacker that only succeeds on a single input length.

3 Barriers to Proving Soundness of 2-Message SPS-ZK

We recall the definition of interactive proofs/arguments and SPS-ZK.

Definition 2 (Interactive Proofs and Arguments [GMR89, BCC88]). A pair of probabilistic in-
teractive algorithms (P, V ) is said to be an interactive proof system for an NP-language L with
witness relation RL if V is probabilistic polynomial-time and the following two conditions hold:

• Completeness: There exists a negligible function ν(·) such that for every x ∈ L and every
y ∈ RL(x), it holds that

Pr [〈P (y), V 〉(x) = 1] ≥ 1− ν(|x|).
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• Soundness: For every (computationally unbounded) interactive algorithm P ∗, x /∈ L, and
y ∈ {0, 1}∗, it holds that

Pr [〈P ∗(y), V 〉(x) = 0] ≥ 1/2.

In case the soundness condition holds only with respect to polynomial-time provers P ∗, the pair
(P, V ) is called an interactive argument system.

We now give the definition of T (·)-simulatability.

Definition 3 (T (·)-Simulatability [Pas03]). Let (P, V ) be an interactive proof/argument system for
an NP-language L with witness relation RL. We say that (P, V ) is T (·)-simulatable if for every
probabilistic polynomial-time adversary V ∗, there exists a T (·)-time simulator S such that for every
probabilistic polynomial-time distinguisher D, there exists a negligible function ν(·) such that for
every x ∈ L, y ∈ RL(x), and z, z′ ∈ {0, 1}∗, it holds that∣∣Pr

[
D(x, z′, 〈P (y), V ∗(z)〉(x)) = 1

]
− Pr

[
D(x, z′, S(x, z)) = 1

]∣∣ ≤ ν(|x|).

We now give the definition of strong T (·)-simulatability.

Definition 4 (Strong T (·)-Simulatability [Pas03]). Let (P, V ) be an interactive proof/argument sys-
tem for an NP-language L with witness relation RL. We say that (P, V ) is strong T (·)-simulatable
if for every probabilistic polynomial-time adversary V ∗, there exists a T (·)-time simulator S such
that for every probabilistic poly(T (·))-time distinguisher D, there exists a negligible function ν(·)
such that for every x ∈ L, y ∈ RL(x), and z, z′ ∈ {0, 1}∗,∣∣Pr

[
D(x, z′, 〈P (y), V ∗(z)〉(x)) = 1

]
− Pr

[
D(x, z′, S(x, z)) = 1

]∣∣ ≤ ν(T (|x|)).

The notions of SPS zero-knowledge and strong SPS zero-knowledge correspond, respectively,
to T (·)-simulatability and strong T (·)-simulatability for a super-polynomial function T (·). It is
shown in [Pas03] that both plain and strong poly(T (·))-simulatability is closed under sequential
composition; we will rely on the proof of this result.

Barriers to 2-message SPS-ZK. We aim to prove limitations of basing soundness for 2-message
SPS-ZK on intractability assumptions. Let us first explicitly define what it means to break sound-
ness.

Definition 5 (Breaking Soundness). We say that A breaks soundness of (P, V ) w.r.t. L with
probability µ(·) if for every n ∈ N,

Pr
[

(x, z)← A(1n) : 〈A(1n, x, z), V (x)〉 = 1 ∧ x /∈ L
]
≥ µ(n).

Let us turn to defining what it means to base soundness on an intractability assumption (C, t(·)).

Definition 6 (Basing Soundness on the Hardness of (C, t(·))). We say that R is a black-box re-
duction for basing soundness of (P, V ) w.r.t. L on the hardness of (C, t(·)) if R is a valid black-box
reduction and there exists a positive polynomial p(·, ·), such that for every deterministic (computa-
tionally unbounded) adversary A that breaks soundness of (P, V ) w.r.t. L with probability µ(·), for
every n ∈ N, RA breaks (C, t(·)) with advantage p(µ(n), 1/n) on input 1n.
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Note that we here require that RA breaks the assumption (C, t(·)) on the security parameter
n by querying A on the same security parameter n. As previously mentioned, a seemingly more
general definition would allow RA to break (C, t(·)) on a polynomially-related security parameter
n′ (which can be efficiently computed given n), but this extra generality does not buy us anything
as we can always redefine C so that on input n it acts as if its input was n′.

Additionally, note that we only consider deterministic attackers; this only makes our result
stronger (and will be useful to us, as we shall see later). We now state and prove our results:

Theorem 2. Suppose one-way functions secure against poly(T (n))-size circuits exist. Then, there
exists an NP-language L such that if (P, V ) is a 2-message T (·)-simulatable protocol for L, and P
runs in polynomial time (given a witness), then for any efficient-challenger assumption (C, t(·)),
if there exists a probabilistic polynomial-time black-box reduction R for basing soundness of (P, V )
w.r.t. L on the hardness of (C, t(·)), then there exists a probabilistic polynomial-time machine B
and a positive polynomial p′(·) such that for sufficiently n ∈ N, B breaks (C, t(·)) with advantage
1/p′(n) on input 1n. Furthermore, if (P, V ) is strong T (·)-simulatable, then the above holds even
if we allow C and R to run in poly(T (n)) time, where in this case our algorithm B runs in time
poly(T (n)) as well.

Before proving Theorem 2, let us remark that since our lower bound rules out reductions that
only need to work for deterministic attackers, by using techniques from [CLMP13] one can directly
extend the proof of Theorem 2 to handle non-uniform reductions as well. A non-uniform reduction
R also gets a function z(A) of the adversary’s (perhaps exponential-sized) description as advice
before interacting with A; we refer the reader to [CLMP13] for further details.

Proof of Theorem 2. We first prove the theorem for the “plain simulatability” case; we next extend
this proof to cover the “strong simulatability” case as well.

By the result of [HILL99], the existence of one-way functions secure against poly(T (n))-size
circuits implies the existence of PRGs secure against poly(T (n))-size circuits.2 Let g : {0, 1}∗ →
{0, 1}∗ be a length-doubling PRG secure against poly(T (n))-size circuits. Consider the language
L = {g(s) | s ∈ {0, 1}∗} with witness relation RL(x) = {s ∈ {0, 1}∗ | g(s) = x}.

Suppose (P, V ) is a 2-message T (·)-simulatable protocol for L, and P runs in polynomial time
given any witness w ∈ RL(x). Suppose further that there exists a polynomial-time black-box
reduction R and a polynomial p(·, ·) such that RA breaks the assumption (C, t(·)) with advantage
p(µ(n), 1/n) on input 1n, whenever A is a deterministic (computationally unbounded) adversary
that breaks soundness of (P, V ) with probability µ(·). Following the “meta-reduction” paradigm
by Boneh and Venkatesan [BV98] (which is also used in [Pas11, GW11, Pas13]), we will use R
to directly break (C, t(·)) with non-negligible probability. More formally, we exhibit a particular
(inefficient) attacker A that breaks soundness of (P, V ) with overwhelming probability, and we next
show how to “emulate” this attacker for R efficiently without disturbing R’s interaction with C.

We first describe our attacker A, and next explain how to emulate it efficiently. More pre-
cisely (as in [Pas11]), we define a class of deterministic attackers Af , parametrized by a function
f : {0, 1}∗ → {0, 1}∞. Given that Af is deterministic, we may assume without loss of generality
that R never asks its oracle the same query twice. Let S = S(x, z) be the T (·)-time simulator for
the verifier V ∗(x, z) = z, i.e., V ∗ sends z to the prover P to get a response a, and then simply

2Even though [HILL99] proved their result for T (n) = poly(n), since it is black-box, it immediately “scales up”
to handle larger T (·) as well.
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outputs a. On input 1n, Af samples x← {0, 1}n using f(1n) as randomness, and then outputs x.
Next, on input a “first message” q, Af (1n) computes a = S(x, q) using f(1n, q) as randomness, and
responds with the message a.

Let RO : {0, 1}∗ → {0, 1}∞ be a uniformly distributed random oracle. Our first claim is
that ARO breaks soundness of (P, V ) with overwhelming probability. First note that except with
negligible probability (over the choice of RO), ARO selects a false statement x /∈ L. Now, consider
an alternative attacker Âf that selects s ∈ {0, 1}n/2 (again using f(1n) as the randomness), lets
x = g(s), and then proceeds just as Af does. It follows from the indistinguishability property of the
simulator S and the completeness of (P, V ) that with overwhelming probability ÂRO convinces the
honest verifier. Because of this fact and the poly(T (n))-indistinguishability of g(Un/2) and Un, it

holds that ARO convinces the honest verifier with overwhelming probability. By the union bound,
we thus have that except with negligible probability, ARO selects a false statement and yet convinces
the honest verifier; that is, ARO breaks soundness of (P, V ) with probability µ(·) = 1− ν(·), where
ν(·) is a negligible function.

By an averaging argument, with probability at least 1−10ν(n) over the choice of a random oracle
f ← RO, Af breaks soundness of (P, V ) with probability at least 0.9, and for each such “good”

choice of f we have that RA
f
(1n) breaks (C, t(·)) with non-negligible advantage p(0.9, 1/n); let

α(n) = p(0.9, 1/n). By the union bound, it follows that RA
RO

(1n) breaks (C, t(·)) with advantage
α(n)/2 for sufficiently large n.

We now construct a probabilistic polynomial-time attacker Ã that emulates ARO. Ã(1n) uni-
formly samples s ∈ {0, 1}n/2 and outputs x = g(s); next, on input a first message q, Ã runs
the honest prover strategy P (x, s) on input the message q and outputs whatever P outputs. We
now show the following claim, which concludes the proof of the first part of Theorem 2 by letting

B = RÃ.

Claim 1. For sufficiently large n, RÃ breaks (C, t(·)) with advantage at least α(n)/6 on common
input 1n.

Proof. From above, we have that RA
RO

(1n) breaks (C, t(·)) with advantage α(n)/2 for sufficiently
large n. Recall the alternative attacker Â defined above. The only difference between ARO and
ÂRO is that the former samples a statement from Un while the latter samples a statement from
g(Un/2). Since R(1n) only queries its oracle on the security parameter n, by the poly(T (n))-

indistinguishability of Un and g(Un/2), it follows that RÂ
RO

(1n) breaks (C, t(·)) with advantage
α(n)/3 for sufficiently large n.

Now, we note that (since R never asks the same query twice) the only difference between ÂRO

and Ã is that the former uses simulated proofs (of true statements) whereas the latter uses honestly
generated proofs. Thus, intuitively, the claim should directly follow by the indistinguishability
property of the simulation (and the fact that C and R are polynomial-size). There is a small catch:
note that R can query its oracle on several first messages q which is like the execution of a verifier
V ∗ in a sequential composition of (P, V ) (on the same fixed statement x). Indeed, by the same
argument behind the sequential composition theorem for SPS simulation [Pas03], we will show that
indistinguishability still holds. More precisely, let m(n) be an upper-bound on the running-time of
R (in this case, m(n) = poly(n)), and define a sequence of m(n) hybrids H0, . . . ,Hm(n) as follows.

The hybrid Hi is the output of C when interacting with R(·) where the first i oracle responses
(apart from the returned x) are simulated (i.e., answered by ÂRO), and the remaining queries are

6



answered by running the honest prover strategy (i.e., answered by Ã). Note that H0 is the output

of C after interacting with RÃ, and Hm(n) is the output of C after interacting with RÂ
RO

.
Indistinguishability of any two consecutive hybrids Hi and Hi+1 follows by the indistinguisha-

bility of the simulation and the fact that oracle responses for all j > i + 1 can be generated in
polynomial-time (given the witness to the selected statement). More formally, if the outputs of

hybrids Hi and Hi+1 are α(n)
6m(n) -distinguishable, we can always fix the first i + 1 queries and the

first i oracle responses so that the same α(n)
6m(n) -distinguishability holds, and then use this fact to

distinguish between an honest proof and a simulated proof (i.e., the answers to the (i+ 1)th query)

with advantage α(n)
6m(n) (by answering the subsequent oracle queries efficiently using a hard-wired

witness), which contradicts the (non-uniform) indistinguishability of the simulation from the honest
proof. Thus, the statistical distance between the output bit of the challenger C in hybrids H0 and

Hm(n) is at most α(n)
6 for sufficiently large n. Since RÂ

RO
(1n) breaks (C, t(·)) with advantage α(n)

3
for sufficiently large n, the claim follows.

Second part of Theorem 2. We finally note that if (P, V ) is strong T (·)-simulatable, then the
very same argument works even if C and R run in time poly(T (n)) (as opposed to poly(n)). The
only difference is that now we shall use m(n) = poly(T (n)) hybrids in the proof of Claim 1 (because
the reduction R can call its oracle poly(T (n)) times). Now, for every pair of consecutive hybrids Hi

and Hi+1 the distinguishability gap that could be obtained by any poly(T (n))-time distinguisher
is at most negligible in T (n) due to the strong T (·)-simulatable property. Therefore, the statistical
distance between the output of the challenger in hybrids H0 and Hm(n) is at most negligible in
T (n) which is indeed at most negl(n). Therefore the statement of Claim 1 still holds the same as
before.
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9

A Related Separation Results

There is a large literature on separation results between cryptographic primitives/assumptions. We
distinguish between two types of results:

Separations for fully black-box constructions. The seminal work of Impagliazzo and Rudich
[IR88] provides a framework for proving black-box separations between cryptographic primitives.
We highlight that this framework refutes the possibility of so-called “fully-black-box constructions”
(see [RTV04] for a taxonomy of various black-box separations); that is, this framework considers
both black-box constructions (i.e., the higher-level primitive only uses the underlying primitive as
a black-box), and black-box proofs of security (i.e., the security reduction only uses the adversary
against the constructed scheme as a black-box). Most black-box separation results fall into this
framework (e.g., [Sim98, GKM+00, BMG07, HHRS07] to name a few). As it was shown by [RTV04],
some of these separations extend to the setting where the security reduction is “semi” or even
“weakly” black-box, but we emphasize that the construction is always black-box.
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Separations for black-box security reductions. In recent years, new types of separations
between cryptographic primitives/assumptions have emerged. These separations apply even to non-
black-box constructions as long as the proof of security is black-box: Pass [Pas06] and Pass, Tseng
and Venkitasubramaniam [PTV11] demonstrate that under certain (new) complexity theoretic
assumptions, various cryptographic tasks cannot be based on one-way functions using a black-box
security reduction, even if the protocol uses the one-way function in a non-black-box way. (These
results follow techniques used by Brassard [Bra83] and Akavia et al [AGGM06] to demonstrate
limitations of “NP-hard cryptography”.)3

Recently, two independent works demonstrate similar types of separation results, but this time
ruling out security reductions to a general set of intractability assumptions: Pass [Pas11] demon-
strates impossibility of using black-box reductions to prove the security of several primitives (e.g.,
Schnorr’s identification scheme, commitment schemes secure under weak notions of selective open-
ing, Chaum blind signatures, etc.) based on any “bounded-round” intractability assumption (where
the challenger uses an a-priori bounded number of messages, but is otherwise unbounded). Gentry
and Wichs [GW11] (assuming the existence of strong pseudorandom generators) demonstrate im-
possibility of using black-box security reductions to prove soundness of “succinct non-interactive
arguments” based on any falsifiable assumption (where the challenger is computationally bounded).
An even more recent work by Pass [Pas13], developed in parallel with the current note, rules out
constructions of statistical NIZK with adaptive soundness and non-interactive non-malleable com-
mitments, based on falsifiable assumptions.

Our results in this work fall into this second category of results and rule out black-box security
reductions for proving the soundness of various forms of SPS zero-knowledge protocols even if the
construction is arbitrarily non-black-box.

3See also the results of Feigenbaum and Fortnow [FF93] and the result of Bogdanov and Trevisan [BT03] that
demonstrate limitations of NP-hard cryptography for restricted types of reductions.
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